Pointing vectors $\vec S$ is defined as a vector whose magnitude is equal to the wave intensity and whose direction is along the direction of wave propagation. Mathematically, it is given by $\vec S = \frac{1}{{{\mu _0}}}(\vec E \times \vec B)$. Show the nature of $\vec S$ vs $t$ graph.
In electromagnetic wave let $\overrightarrow{\mathrm{E}}$ is in $y$-direction, $\overrightarrow{\mathrm{B}}$ is in $z$-direction and electromagnetic wave propagate in $x$-direction energy propagating will be in direction of $\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}$ (in $x$-direction).
$\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \sin (\omega t-k x) \hat{j}$
$\overrightarrow{\mathrm{B}}=\mathrm{B}_{0} \sin (\omega t-k x) \hat{k}$
$\therefore \overrightarrow{\mathrm{S}}=\frac{1}{\mu_{0}}(\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}})=\frac{1}{\mu_{0}} \mathrm{E}_{0} \mathrm{~B}_{0} \sin ^{2}(\omega t-k x)(\hat{j} \times \hat{k})$
$\therefore \overrightarrow{\mathrm{S}}=\frac{\mathrm{E}_{0} \mathrm{~B}_{0}}{\mu_{0}} \sin ^{2}(\omega t-k x) \hat{i}[\because \hat{j} \times \hat{k}=\hat{i}]$
Variation in magnitude of $|\overrightarrow{\mathrm{S}}|$ with time is shown in figure shown below.
The electric field in an electromagnetic wave is given as $\vec{E}=20 \sin \omega\left(t-\frac{x}{c}\right) \vec{j} NC ^{-1}$ Where $\omega$ and $c$ are angular frequency and velocity of electromagnetic wave respectively. The energy contained in a volume of $5 \times 10^{-4}\, m ^3$ will be $.....\times 10^{-13}\,J$
(Given $\varepsilon_0=8.85 \times 10^{-12}\,C ^2 / Nm ^2$ )
The pressure exerted by an electromagnetic wave of intensity $I (watts/m^2)$ on a nonreflecting surface is [$c$ is the velocity of light]
The electromagnetic waves do not transport
The electric field in an electromagnetic wave is given by $\overrightarrow{\mathrm{E}}=\hat{\mathrm{i}} 40 \cos \omega\left(\mathrm{t}-\frac{\mathrm{z}}{\mathrm{c}}\right) N \mathrm{NC}^{-1}$. The magnetic field induction of this wave is (in SI unit):
The average value of electric energy density in an electromagnetic wave is :