14.Probability
medium

Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that  the problem is solved.

A

$\frac{2}{3}$

B

$\frac{2}{3}$

C

$\frac{2}{3}$

D

$\frac{2}{3}$

Solution

Probability of solving the problem by $\mathrm{A}, \mathrm{P}(\mathrm{A})=\frac{1}{2}$

Probability of solving the problem by $\mathrm{B}, \mathrm{P}(\mathrm{B})=\frac{1}{3}$

since the problem is solved independently by $A$ and $B$,

$\therefore $ $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$

$P(A^{\prime})=1-P(A)=1-\frac{1}{2}=\frac{1}{2}$

$P(B^{\prime})=1-P(B)=1-\frac{1}{3}=\frac{2}{3}$

Probability that the problem is solved $=\mathrm{P}(\mathrm{A} \cup \mathrm{B})$

$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{AB})$

$=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}$

$=\frac{4}{6}$

$=\frac{2}{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.