Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that the problem is solved.
Probability of solving the problem by $\mathrm{A}, \mathrm{P}(\mathrm{A})=\frac{1}{2}$
Probability of solving the problem by $\mathrm{B}, \mathrm{P}(\mathrm{B})=\frac{1}{3}$
since the problem is solved independently by $A$ and $B$,
$\therefore $ $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$
$P(A^{\prime})=1-P(A)=1-\frac{1}{2}=\frac{1}{2}$
$P(B^{\prime})=1-P(B)=1-\frac{1}{3}=\frac{2}{3}$
Probability that the problem is solved $=\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{AB})$
$=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}$
$=\frac{4}{6}$
$=\frac{2}{3}$
A coin is tossed twice. If events $A$ and $B$ are defined as :$A =$ head on first toss, $B = $ head on second toss. Then the probability of $A \cup B = $
Given two independent events $A$ and $B$ such $P(A)$ $=0.3,\, P(B)=0.6 .$ Find $P(A$ or $B)$
If $P(A) = 2/3$, $P(B) = 1/2$ and ${\rm{ }}P(A \cup B) = 5/6$ then events $A$ and $B$ are
Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that both balls are red.
If $A$ and $B$ are two events of a random experiment, $P\,(A) = 0.25$, $P\,(B) = 0.5$ and $P\,(A \cap B) = 0.15,$ then $P\,(A \cap \bar B) = $