Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that  the problem is solved.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Probability of solving the problem by $\mathrm{A}, \mathrm{P}(\mathrm{A})=\frac{1}{2}$

Probability of solving the problem by $\mathrm{B}, \mathrm{P}(\mathrm{B})=\frac{1}{3}$

since the problem is solved independently by $A$ and $B$,

$\therefore $ $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$

$P(A^{\prime})=1-P(A)=1-\frac{1}{2}=\frac{1}{2}$

$P(B^{\prime})=1-P(B)=1-\frac{1}{3}=\frac{2}{3}$

Probability that the problem is solved $=\mathrm{P}(\mathrm{A} \cup \mathrm{B})$

$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{AB})$

$=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}$

$=\frac{4}{6}$

$=\frac{2}{3}$

Similar Questions

In two events $P(A \cup B) = 5/6$, $P({A^c}) = 5/6$, $P(B) = 2/3,$ then $A$ and $B$ are

An integer is chosen at random from the integers $\{1,2,3, \ldots \ldots . .50\}$. The probability that the chosen integer is a multiple of atleast one of $4,6$ and $7$ is

  • [JEE MAIN 2024]

Let $A$,$B$ and $C$ be three events such that $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ and $P\left( {\bar A \cap B \cap C} \right) = 0.1$, then the value of $P$(atleast two among $A$,$B$ and $C$ ) equals

Two dice are thrown independently. Let $A$ be the event that the number appeared on the $1^{\text {st }}$ die is less than the number appeared on the $2^{\text {nd }}$ die, $B$ be the event that the number appeared on the $1^{\text {st }}$ die is even and that on the second die is odd, and $C$ be the event that the number appeared on the $1^{\text {st }}$ die is odd and that on the $2^{\text {nd }}$ is even. Then

  • [JEE MAIN 2023]

Two cards are drawn at random and without replacement from a pack of $52$ playing cards. Finds the probability that both the cards are black.