If $A$ and $B$ are two mutually exclusive events, then $P\,(A + B) = $
$P\,(A) + P\,(B) - P\,(AB)$
$P\,(A) - P\,(B)$
$P\,(A) + P\,(B)$
$P\,(A) + P\,(B) + P\,(AB)$
One card is drawn randomly from a pack of $52$ cards, then the probability that it is a king or spade is
Consider an experiment of tossing a coin repeatedly until the outcomes of two consecutive tosses are same. If the probability of a random toss resulting in head is $\frac{1}{3}$, then the probability that the experiment stops with head is.
Let $A$ and $B$ be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find $P(A \cup B)$
If the probability of a horse $A$ winning a race is $1/4$ and the probability of a horse $B$ winning the same race is $1/5$, then the probability that either of them will win the race is
If $A$ and $B$ are two events of a random experiment, $P\,(A) = 0.25$, $P\,(B) = 0.5$ and $P\,(A \cap B) = 0.15,$ then $P\,(A \cap \bar B) = $