If $A$ and $B$ are two mutually exclusive events, then $P\,(A + B) = $
$P\,(A) + P\,(B) - P\,(AB)$
$P\,(A) - P\,(B)$
$P\,(A) + P\,(B)$
$P\,(A) + P\,(B) + P\,(AB)$
(c) $P(A) + P(B)$ (Fundamental concept).
If $A$ and $B$ an two events such that $P\,(A \cup B) = \frac{5}{6}$,$P\,(A \cap B) = \frac{1}{3}$ and $P\,(\bar B) = \frac{1}{3},$ then $P\,(A) = $
Events $\mathrm{A}$ and $\mathrm{B}$ are such that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ and $\mathrm{P}$ $($ not $ \mathrm{A}$ or not $\mathrm{B})=\frac{1}{4} .$ State whether $\mathrm{A}$ and $\mathrm{B}$ are independent?
If the odds in favour of an event be $3 : 5$, then the probability of non-occurrence of the event is
Let $A$,$B$ and $C$ be three events such that $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ and $P\left( {\bar A \cap B \cap C} \right) = 0.1$, then the value of $P$(atleast two among $A$,$B$ and $C$ ) equals
Let ${E_1},{E_2},{E_3}$ be three arbitrary events of a sample space $S$. Consider the following statements which of the following statements are correct
Confusing about what to choose? Our team will schedule a demo shortly.