If $A$ and $B$ are two mutually exclusive events, then $P\,(A + B) = $
$P\,(A) + P\,(B) - P\,(AB)$
$P\,(A) - P\,(B)$
$P\,(A) + P\,(B)$
$P\,(A) + P\,(B) + P\,(AB)$
One card is drawn from a pack of $52$ cards. The probability that it is a queen or heart is
$A$ and $B$ are events such that $P(A)=0.42$, $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P ($ not $A ).$
A bag contains $9$ discs of which $4$ are red, $3$ are blue and $2$ are yellow. The discs are similar in shape and size. A disc is drawn at random from the bag. Calculate the probability that it will be either red or blue.
A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale, otherwise, it is rejected. Find the probability that a box containing $15$ oranges out of which $12$ are good and $3$ are bad ones will be approved for sale.
One bag contains $5$ white and $4$ black balls. Another bag contains $7$ white and $9$ black balls. A ball is transferred from the first bag to the second and then a ball is drawn from second. The probability that the ball is white, is