Given two independent events $A$ and $B$ such $P(A)=0.3,\, P(B)=0.6 .$ Find $P(A $ and not $B)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $\mathrm{P}(\mathrm{A})=0.3, \,\mathrm{P}(\mathrm{B})=0.6$

Also, $A$ and $B$ are independent events.

$\mathrm{P}(\mathrm{A}$ and not $\mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B})^{\prime}$

$=\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$=0.3-0.18$

$=0.12$

Similar Questions

If $A$ and $B$ are two events such that $P\,(A \cup B) = P\,(A \cap B),$ then the true relation is

  • [IIT 1998]

If $A$ and $B$ are two independent events, then the probability of occurrence of at least one of $\mathrm{A}$ and $\mathrm{B}$ is given by $1 -\mathrm{P}\left(\mathrm{A}^{\prime}\right) \mathrm{P}\left(\mathrm{B}^{\prime}\right)$

In two events $P(A \cup B) = 5/6$, $P({A^c}) = 5/6$, $P(B) = 2/3,$ then $A$ and $B$ are

An integer is chosen at random from the integers $\{1,2,3, \ldots \ldots . .50\}$. The probability that the chosen integer is a multiple of atleast one of $4,6$ and $7$ is

  • [JEE MAIN 2024]

If $A$ and $B$ are any two events, then $P(A \cup B) = $