Given two independent events $A$ and $B$ such $P(A)=0.3,\, P(B)=0.6 .$ Find $P(A $ and not $B)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $\mathrm{P}(\mathrm{A})=0.3, \,\mathrm{P}(\mathrm{B})=0.6$

Also, $A$ and $B$ are independent events.

$\mathrm{P}(\mathrm{A}$ and not $\mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B})^{\prime}$

$=\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$=0.3-0.18$

$=0.12$

Similar Questions

Three coins are tossed simultaneously. Consider the event $E$ ' three heads or three tails', $\mathrm{F}$ 'at least two heads' and $\mathrm{G}$ ' at most two heads '. Of the pairs $(E,F)$, $(E,G)$ and $(F,G)$, which are independent? which are dependent ?

Let two fair six-faced dice $A$ and $B$ be thrown simultaneously. If  $E_1$ is the event that die $A$ shows up four, $E_2 $ is the event that die $B$ shows up two and $E_3$ is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT true $?$

  • [JEE MAIN 2016]

If $A$ and $B$ are two independent events, then $P\,(A + B) = $

If an integer is chosen at random from first $100$ positive integers, then the probability that the chosen number is a multiple of $4$ or $6$, is

In a certain population $10\%$ of the people are rich, $5\%$ are famous and $3\%$ are rich and famous. The probability that a person picked at random from the population is either famous or rich but not both, is equal to