Projection of vector $\vec A$ on $\vec B$ is
$\vec A.\vec B$
$\vec A.\hat B$
$\vec B \times \vec A$
$\hat B.\hat A$
$A\,\cos \,\theta = \frac{{\vec A.\vec B}}{{\left| {\vec B} \right|}} = \vec A.\hat B$
The angle between the vectors $(\hat i + \hat j)$ and $(\hat j + \hat k)$ is ……. $^o$
The angle between vectors $(\overrightarrow {\rm{A}} \times \overrightarrow {\rm{B}} )$ and $(\overrightarrow {\rm{B}} \times \overrightarrow {\rm{A}} )$ is
If $\overrightarrow {\rm A} = 2\hat i + 3\hat j – \hat k$ and $\overrightarrow B = – \hat i + 3\hat j + 4\hat k$ then projection of $\overrightarrow A $ on $\overrightarrow B $ will be
The vectors from origin to the points $A$ and $B$ are $\overrightarrow A = 3\hat i – 6\hat j + 2\hat k$ and $\overrightarrow B = 2\hat i + \hat j – 2\hat k$ respectively. The area of the triangle $OAB$ be
Confusing about what to choose? Our team will schedule a demo shortly.