Find unit vector perpendicular to $\vec A$ and $\vec B$ where $\vec A = \hat i - 2\hat j + \hat k$ and $\vec B = \hat i + 2\hat j$

  • A
    $\frac{{2\hat i + \hat j + 4\hat k}}{{\sqrt {21} }}$
  • B
    $\frac{{ - 2\hat i + \hat j + 4\hat k}}{{\sqrt {21} }}$
  • C
    $\frac{{ - 2\hat i - \hat j + 4\hat k}}{{\sqrt {21} }}$
  • D
    $\frac{{2\hat i + \hat j + 4\hat k}}{{\sqrt 5 }}$

Similar Questions

A vector $\vec{A}$ points towards North and vector $\vec{B}$ points upwards then $\vec{A} \times \vec{B}$ points towards ...........

The angle between the vectors $\overrightarrow A $ and $\overrightarrow B $ is $\theta .$ The value of the triple product $\overrightarrow A \,.\,(\overrightarrow B \times \overrightarrow A \,)$ is

  • [AIPMT 2005]

Why the product of two vectors is not commutative ?

Show that $a \cdot( b \times c )$ is equal in magnitude to the volume of the parallelepiped formed on the three vectors, $a, b$ and $c$.

A particle moves in the $x-y$ plane under the action of a force $\overrightarrow F $ such that the value of its linear momentum $(\overrightarrow P )$ at anytime t is ${P_x} = 2\cos t,\,{p_y} = 2\sin t.$ The angle $\theta $between $\overrightarrow F $ and $\overrightarrow P $ at a given time $t$. will be $\theta =$ ........... $^o$