Find unit vector perpendicular to $\vec A$ and $\vec B$ where $\vec A = \hat i - 2\hat j + \hat k$ and $\vec B = \hat i + 2\hat j$
$\frac{{2\hat i + \hat j + 4\hat k}}{{\sqrt {21} }}$
$\frac{{ - 2\hat i + \hat j + 4\hat k}}{{\sqrt {21} }}$
$\frac{{ - 2\hat i - \hat j + 4\hat k}}{{\sqrt {21} }}$
$\frac{{2\hat i + \hat j + 4\hat k}}{{\sqrt 5 }}$
Give the names of two methods for vector addition. Write the law of parallogram for vector addition.
Let $\overrightarrow C = \overrightarrow A + \overrightarrow B$
$(A)$ It is possible to have $| \overrightarrow C | < | \overrightarrow A |$ and $ | \overrightarrow C | < | \overrightarrow B|$
$(B)$ $|\overrightarrow C |$ is always greater than $|\overrightarrow A |$
$(C)$ $|\overrightarrow C |$ may be equal to $|\overrightarrow A | + |\overrightarrow B|$
$(D)$ $|\overrightarrow C |$ is never equal to $|\overrightarrow A | + |\overrightarrow B|$
Which of the above is correct
Figure shows $ABCDEF$ as a regular hexagon. What is the value of $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ (in $\overrightarrow {AO} $)
What displacement must be added to the displacement $25\hat i - 6\hat j\,\,m$ to give a displacement of $7.0\, m$ pointing in the $X- $direction
The vectors $\vec{A}$ and $\vec{B}$ are such that
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
The angle between the two vectors is