Find unit vector perpendicular to $\vec A$ and $\vec B$ where $\vec A = \hat i - 2\hat j + \hat k$ and $\vec B = \hat i + 2\hat j$

  • A
    $\frac{{2\hat i + \hat j + 4\hat k}}{{\sqrt {21} }}$
  • B
    $\frac{{ - 2\hat i + \hat j + 4\hat k}}{{\sqrt {21} }}$
  • C
    $\frac{{ - 2\hat i - \hat j + 4\hat k}}{{\sqrt {21} }}$
  • D
    $\frac{{2\hat i + \hat j + 4\hat k}}{{\sqrt 5 }}$

Similar Questions

Show that the area of the triangle contained between the vectors $a$ and $b$ is one half of the magnitude of $a \times b .$

Explain cross product of two vectors.

The diagonals of a parallelogram are $2\,\hat i$ and $2\hat j.$What is the area of the parallelogram.........$units$

The values of $x$ and $y$ for which vectors $\vec A = \left( {6\hat i + x\hat j - 2\hat k} \right)$ and $\vec B = \left( {5\hat i - 6\hat j - y\hat k} \right)$ may be parallel are

The angle between the vectors $\overrightarrow A $ and $\overrightarrow B $ is $\theta .$ The value of the triple product $\overrightarrow A \,.\,(\overrightarrow B \times \overrightarrow A \,)$ is

  • [AIPMT 1991]