- Home
- Standard 10
- Mathematics
8. Introduction to Trigonometry
medium
સાબિત કરો કે $\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1$
Option A
Option B
Option C
Option D
Solution
આપણે જાણીએ છીએ કે $\sin ^{2} \theta+\cos ^{2} \theta=1$
માટે, $\quad\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}=1$
$\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3}+3 \sin ^{2} \theta \cos ^{2} \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=1$
$\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1$
Standard 10
Mathematics