8. Introduction to Trigonometry
medium

સાબિત કરો કે $\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1$

Option A
Option B
Option C
Option D

Solution

આપણે જાણીએ છીએ કે $\sin ^{2} \theta+\cos ^{2} \theta=1$

માટે, $\quad\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}=1$

$\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3}+3 \sin ^{2} \theta \cos ^{2} \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=1$

$\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1$

Standard 10
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.