8. Introduction to Trigonometry
medium

Prove that $\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1$

Option A
Option B
Option C
Option D

Solution

We know that $\sin ^{2} \theta+\cos ^{2} \theta=1$

Therefore, $\quad\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}=1$

or, $\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3}+3 \sin ^{2} \theta \cos ^{2} \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=1$

or, $\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1$

Standard 10
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.