- Home
- Standard 10
- Mathematics
8. Introduction to Trigonometry
medium
सिद्ध कीजिए कि $\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1$ है।
Option A
Option B
Option C
Option D
Solution
We know that $\sin ^{2} \theta+\cos ^{2} \theta=1$
Therefore, $\quad\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}=1$
or, $\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3}+3 \sin ^{2} \theta \cos ^{2} \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=1$
or, $\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1$
Standard 10
Mathematics