2. Polynomials
hard

सिद्ध कीजिए कि $(a+b+c)^{3}-a^{3}-b^{3}-c^{3}=3(a+b)(b+c)(c+a)$ है।

Option A
Option B
Option C
Option D

Solution

$(a+b+c)^{3}=[(a+b)+c]^{3}=(a+b)^{3}+3(a+b)^{2} c+3(a+b) c^{2}+c^{3}$

$\Rightarrow (a+b+c)^{3}=\left(a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\right)+3\left(a^{2}+2 a b+b^{2}\right) c+3(a+b) c^{2}+c^{3}$

$\Rightarrow (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3 a^{2} b+3 a^{2} c+3 a b^{2}+3 b^{2} c+3 a c^{2}+3 b c^{2}+6 a b c$

$\Rightarrow (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3 a^{2} b+3 a^{2} c+3 a b^{2}+3 b^{2} c+3 a c^{2}+3 b c^{2}+$

$3 abc +3 abc$

$\Rightarrow (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3 a\left(a b+a c+b^{2}+b c\right)+3 c\left(a b+a c+b^{2}+b c\right)$

$\Rightarrow (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+c)\left(a b+a c+b^{2}+b c\right)$

$\Rightarrow (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+c)[a(b+c)+b(b+c)]$

$\Rightarrow (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+c)(b+c)(a+b)$

$\Rightarrow (a+b+c)^{3}-a^{3}-b^{3}-c^{3}=3(a+c)(b+c)(a+b)$

Hence,proved.

Standard 9
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.