Prove that the Greatest Integer Function $f: R \rightarrow R ,$ given by $f(x)=[x]$, is neither one-one nor onto, where $[x]$ denotes the greatest integer less than or equal to $x$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$f : R \rightarrow R$ is given by, $f ( x )=[ x ]$

It is seen that $f(1.2)=[1.2]=1, f(1.9)=[1.9]=1$

$\therefore f (1.2)= f (1.9),$ but $1.2 \neq 1.9$

$\therefore f$ is not one $-$ one.

Now, consider $0.7 \in R$

It is known that $f(x)=[x]$ is always an integer. Thus, there does not exist any element $x \in R$ such that $f(x)=0.7$

$\therefore f$ is not onto

Hence, the greatest integer function is neither one-one nor onto.

Similar Questions

The range of the function $f(x) = \frac{{\sqrt {1 - {x^2}} }}{{1 + \left| x \right|}}$ is 

The function $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ where $[.]$ denotes the greatest integer less than or equal to $x$  is defined for all  $x$  belonging to

Let $f: R \rightarrow R$ be a function defined by $f(x)=\left\{\begin{array}{l}\frac{\sin \left(x^2\right)}{x} \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right\}$ Then, at $x=0, f$ is

 

  • [KVPY 2019]

Domain of the function $f(x) = {\sin ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\cos ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\tan ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right)$ is

The function $f\left( x \right) = \left| {\sin \,4x} \right| + \left| {\cos \,2x} \right|$, is a periodic function with period

  • [JEE MAIN 2014]