- Home
- Standard 12
- Mathematics
1.Relation and Function
medium
સાબિત કરો કે $f: R \rightarrow R ,$ $f(x)=[x]$ દ્વારા વ્યાખ્યાયિત મહત્તમ પૂર્ણાક વિધેય $(Greatest\, integer \,function)$ એક-એક પણ નથી અને વ્યાપ્ત પણ નથી. અહીં, $[x]$ એ $x$ થી નાના અથવા $x$ ને સમાન તમામ પૂર્ણાકોમાં મહત્તમ પૂર્ણાક દર્શાવે છે. બીજા શબ્દોમાં $x$ થી અધિક નહિ તેવા પૂર્ણાકોમાં સૌથી મોટો પૂર્ણાક $x$ છે.
Option A
Option B
Option C
Option D
Solution
$f : R \rightarrow R$ is given by, $f ( x )=[ x ]$
It is seen that $f(1.2)=[1.2]=1, f(1.9)=[1.9]=1$
$\therefore f (1.2)= f (1.9),$ but $1.2 \neq 1.9$
$\therefore f$ is not one $-$ one.
Now, consider $0.7 \in R$
It is known that $f(x)=[x]$ is always an integer. Thus, there does not exist any element $x \in R$ such that $f(x)=0.7$
$\therefore f$ is not onto
Hence, the greatest integer function is neither one-one nor onto.
Standard 12
Mathematics