સાબિત કરો કે $f: R \rightarrow R ,$ $f(x)=[x]$ દ્વારા વ્યાખ્યાયિત મહત્તમ પૂર્ણાક વિધેય $(Greatest\, integer \,function)$ એક-એક પણ નથી અને વ્યાપ્ત પણ નથી. અહીં, $[x]$ એ $x$ થી નાના અથવા $x$ ને સમાન તમામ પૂર્ણાકોમાં મહત્તમ પૂર્ણાક દર્શાવે છે. બીજા શબ્દોમાં $x$ થી અધિક નહિ તેવા પૂર્ણાકોમાં સૌથી મોટો પૂર્ણાક $x$ છે.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$f : R \rightarrow R$ is given by, $f ( x )=[ x ]$

It is seen that $f(1.2)=[1.2]=1, f(1.9)=[1.9]=1$

$\therefore f (1.2)= f (1.9),$ but $1.2 \neq 1.9$

$\therefore f$ is not one $-$ one.

Now, consider $0.7 \in R$

It is known that $f(x)=[x]$ is always an integer. Thus, there does not exist any element $x \in R$ such that $f(x)=0.7$

$\therefore f$ is not onto

Hence, the greatest integer function is neither one-one nor onto.

Similar Questions

જો $f(x)$ માટે $f(7 -x) = f(7 + x)\ \forall \,x\, \in \,R$ મળે કે જેથી $f(x)$ ને $5$ ભિન્ન વાસ્તવિક બીજો મળે કે જેનો સરવાળો $S$ થાય તો $S/7$ ની કિમત ......... થાય.

વિધેય $f(x) = \log \cos 2x + \sin 4x$ નુ આવર્તમાન મેળવો.

જો $f(x)$ એ બહુપદી વિધેય હોય કે જેથી $f(x).f (\frac{1}{x}) = f(x) + f (\frac{1}{x})$ અને $f(4) = 65$ થાય તો $f(6)$ ની કિમત મેળવો.

જો $f(x) = cos(\sqrt P \,x),$ જ્યા $P = [\lambda], ([.]$ = $G.I.F.)$ અને $f(x)$ નુ આવર્તમાન  $\pi$ હોય તો, 

ધારો કે $\mathrm{A}=\{1,3,7,9,11\}$ અને $\mathrm{B}=\{2,4,5,7,8,10,12\}$. તો $f(1)+f(3)=14$ થાય તેવા એક-એક વિધેયો $f: A \rightarrow B$ ની કુલ સંખ્યા .......... છે.

  • [JEE MAIN 2024]