3 and 4 .Determinants and Matrices
medium

Prove that

$\Delta=\left|\begin{array}{ccc}
a+b x & c+d x & p+q x \\
a x+b & c x+d & p x+q \\
u & v & w
\end{array}\right|=\left(1-x^{2}\right)\left|\begin{array}{lll}
a & c & p \\
b & d & q \\
u & v & m
\end{array}\right|$

Option A
Option B
Option C
Option D

Solution

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-x \mathrm{R}_{2}$ to $\Delta,$ we get

${\Delta  = \left| {\begin{array}{*{20}{c}}
  {a\left( {1 – {x^2}} \right)}&{c\left( {1 – {x^2}} \right)}&{p\left( {1 – {x^2}} \right)} \\ 
  {ax + b}&{cx + d}&{px + q} \\ 
  u&v&w 
\end{array}} \right|}$

${ = \left( {1 – {x^2}} \right)\left| {\begin{array}{*{20}{c}}
  a&c&p \\ 
  {ax + b}&{cx + d}&{px + q} \\ 
  u&v&w 
\end{array}} \right|}$

Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-x \mathrm{R}_{1},$ we get

$\Delta=\left(1-x^{2}\right)\left|\begin{array}{lll}
a & c & p \\
b & d & q \\
u & v & w
\end{array}\right|$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.