Prove that
$\Delta=\left|\begin{array}{ccc}
a+b x & c+d x & p+q x \\
a x+b & c x+d & p x+q \\
u & v & w
\end{array}\right|=\left(1-x^{2}\right)\left|\begin{array}{lll}
a & c & p \\
b & d & q \\
u & v & m
\end{array}\right|$
Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-x \mathrm{R}_{2}$ to $\Delta,$ we get
${\Delta = \left| {\begin{array}{*{20}{c}}
{a\left( {1 - {x^2}} \right)}&{c\left( {1 - {x^2}} \right)}&{p\left( {1 - {x^2}} \right)} \\
{ax + b}&{cx + d}&{px + q} \\
u&v&w
\end{array}} \right|}$
${ = \left( {1 - {x^2}} \right)\left| {\begin{array}{*{20}{c}}
a&c&p \\
{ax + b}&{cx + d}&{px + q} \\
u&v&w
\end{array}} \right|}$
Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-x \mathrm{R}_{1},$ we get
$\Delta=\left(1-x^{2}\right)\left|\begin{array}{lll}
a & c & p \\
b & d & q \\
u & v & w
\end{array}\right|$
The value of $\left| {\,\begin{array}{*{20}{c}}{{5^2}}&{{5^3}}&{{5^4}}\\{{5^3}}&{{5^4}}&{{5^5}}\\{{5^4}}&{{5^5}}&{{5^7}}\end{array}\,} \right|$ is
The value of $x$ obtained from the equation $\left| {\,\begin{array}{*{20}{c}}{x + \alpha }&\beta &\gamma \\\gamma &{x + \beta }&\alpha \\\alpha &\beta &{x + \gamma }\end{array}\,} \right| = 0$ will be
If $a, b $ and $ c$ are non zero numbers, then $\Delta = \left| {\,\begin{array}{*{20}{c}}{{b^2}{c^2}}&{bc}&{b + c}\\{{c^2}{a^2}}&{ca}&{c + a}\\{{a^2}{b^2}}&{ab}&{a + b}\end{array}\,} \right|$ is equal to
Using the property of determinants and without expanding, prove that:
$\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|=0$
$\left| {\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\sin }^2}\theta }&{{{\sin }^2}\theta }\\{{{\cos }^2}\theta }&{1 + {{\cos }^2}\theta }&{{{\cos }^2}\theta }\\{4\sin 4\theta }&{4\sin 4\theta }&{1 + 4\sin 4\theta }\end{array}} \right| = 0$ then $\sin \,4\theta $ equal to