- Home
- Standard 12
- Mathematics
Prove that $\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$
Solution
$\Delta=\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|$
Taking out common factors $a, b$ and $c$ from $C_{1}, C_{2},$ and $C_{3},$ we have:
$\Delta=a b c\left|\begin{array}{ccc}a & c & a+c \\ a+b & b & a \\ b & b+c & c\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1},$ we have:
$\Delta=a b c\left|\begin{array}{ccc}a & c & a+c \\ b & b-c & -c \\ b-a & b & -a\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}+R_{1},$ we have:
$\Delta=a b c\left|\begin{array}{ccc}a & c & a+c \\ a+b & b & a \\ b-a & b & -a\end{array}\right|$
Applying $R_{3} \rightarrow R_{3}+R_{2},$ we have:
$\Delta=a b c\left|\begin{array}{ccc}a & c & a+c \\ a+b & b & a \\ 2 b & 2 b & 0\end{array}\right|$
$=2 a b^{2} c\left|\begin{array}{ccc}a & c & a+c \\ a+b & b & a \\ 1 & 1 & 0\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1},$ we have:
$\Delta=2 a b^{2} c\left|\begin{array}{ccc}a & c-a & a+c \\ a+b & -a & a \\ 1 & 0 & 0\end{array}\right|$
Expanding along $R_{3},$ we have:
$\Delta=2 a b^{2} c[a(c-a)+a(a+c)]$
$=2 a b^{2} c\left[a c-a^{2}+a^{2}+a c\right]$
$=2 a b^{2} c(2 a c)$
$=4 a^{2} b^{2} c^{2}$
Hence, the given result is proved.