Quantity $Z$ varies with $x$ and $y$ , according to given equation $Z = x^2y - xy^2$ , where $x = 3.0 \pm 0.1$ and $y = 2.0 \pm 0.1$ . The value of $Z$ is
$6 \pm 1.1$
$6 \pm 1.4$
$6 \pm 1$
$6 \pm 0.1$
The radius of a sphere is measured to be $(7.50 \pm 0.85) \,cm .$ Suppose the percentage error in its volume is $x$. The value of $x$, to the nearest integer is .....$\%$
In an experiment, the following observation's were recorded : $L = 2.820\, m, M = 3.00 \,kg, l = 0.087 \,cm$, Diameter $D = 0.041 \,cm$ Taking $g = 9.81$ $m/{s^2}$ using the formula , $Y=\frac{{4MgL}}{{\pi {D^2}l}}$, the maximum permissible error in $Y$ is ......... $\%$
Accuracy of measurement is determined by
If $a, b, c$ are the percentage errors in the measurement of $A, B$ and $C$, then the percentage error in $ABC$ would be approximately
Durring Searle's experiment, zero of the Vernier scale lies between $3.20 \times 10^{-2} m$ and $3.25 \times 10^{-2} m$ of the main scale. The $20^{\text {th }}$ division of the Vernier scale exactly coincides with one of the main scale divisions. When an additional load of $2 \ kg$ is applied to the wire, the zero of the Vernier scale still lies between $3.20 \times 10^{-2} m$ and $3.25 \times 10^{-2} m$ of the main scale but now the $45^{\text {th }}$ division of Vernier scale coincides with one of the main scale divisions. The length of the thin metallic wire is $2 m$. and its cross-sectional area is $8 \times 10^{-7} m ^2$. The least count of the Vernier scale is $1.0 \times 10^{-5} m$. The maximum percentage error in the Young's modulus of the wire is