Range of the function $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ is

  • A

    $( - \infty ,\;\infty )$

  • B

    ${1}$

  • C

    $(-1, 1)$

  • D

    $(0, 1)$

Similar Questions

The period of the function $f(x) = \log \cos 2x + \sin 4x$ is :-

The number of bijective functions $f :\{1,3,5, 7, \ldots \ldots . .99\} \rightarrow\{2,4,6,8, \ldots \ldots, 100\}$, such that $f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots \ldots f(99), \quad$ is

  • [JEE MAIN 2022]

Show that none of the operations given above has identity.

If $a, b$ be two fixed positive integers such that $f(a + x) = b + {[{b^3} + 1 - 3{b^2}f(x) + 3b{\{ f(x)\} ^2} - {\{ f(x)\} ^3}]^{\frac{1}{3}}}$ for all real $x$, then $f(x)$ is a periodic function with period

Let $c, k \in R$. If $f(x)=(c+1) x^{2}+\left(1-c^{2}\right) x+2 k$ and $f(x+y)=f(x)+f(y)-x y$, for all $x, y \in R$, then the value of $|2( f (1)+ f (2)+ f (3)+\ldots \ldots+ f (20)) \mid$ is equal to

  • [JEE MAIN 2022]