फलन $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ का परिसर है
$( - \infty ,\;\infty )$
${1}$
$(-1, 1)$
$(0, 1)$
(b) $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4}) = 1$.
अत: परिसर $ = \left\{ 1 \right\}$ है।
एकैकी फलन
$f :\{ a , b , c , d \} \rightarrow\{0,1,2, \ldots, 10\}$
की संख्या, ताकि $2 f ( a )- f ( b )+3 f ( c )+ f ( d )=0$
है, होगी
सिद्ध कीजिए कि $f(x)=|x|$ द्वारा प्रद्त मापांक फलन $f: R \rightarrow R$, न तो एकेकी है और न आच्छादक है, जहाँ $|x|$ बराबर $x$, यदि $x$ धन या शून्य है तथा $|x|$ बराबर $-x$, यदि $x$ रुण है।
फलन $f(x)=|\sin 4 x|+|\cos 2 x|$ एक आवर्ति फलन है जिसका आवर्त काल है
माना $f ( x )= ax ^2+ bx + c$ है, जिसके लिए $f (1)=3, f (-2)=\lambda$ तथा $f (3)=4$. हैं। यदि $f (0)+ f (1)+ f (-2)+ f (3)=14$ है, तो $\lambda$ बराबर है
यदि फलन $f( x )=\frac{\cos ^{-1} \sqrt{ x ^{2}- x +1}}{\sqrt{\sin ^{-1}\left(\frac{2 x -1}{2}\right)}}$ का प्रान्त, अन्तराल $(\alpha, \beta]$ है, तो $\alpha+\beta$ बराबर है –
Confusing about what to choose? Our team will schedule a demo shortly.