Set of all values of $x$ satisfying
$\frac{{{x^4} - 4{x^3} + 3{x^2}}}{{({x^2} - 4)({x^2} - 7x + 10)}} \ge 0$
$\left( { - \infty ,\, - 2} \right)\,\, \cup \,\,[1,\,3]\,\, \cup \,\,(5,\infty )$
$\left( { - \infty ,\, - 2} \right)\,\,\, \cup \,\,\,[0,\,1]\,\,\, \cup \,\,\left( {2,3} \right]\,\, \cup \,\,(5,\infty )$
$\left( { - \infty ,\, - 2} \right)\,\,\, \cup \,\,\,[1,\,3]\,\,\, \cup \,\,(5,\infty )\,\, \cup \,\,\{ 0\} $
$\left( { - \infty ,\, - 2} \right)\,\,\, \cup \,\,\,[1,\,2]\,\,\, \cup \,\,\left( {2,3} \right]\,\,\, \cup \,\,(5,\infty )\,\, \cup \,\,\{ 0\} $
The domain of $f(x) = [\sin x] \cos \left( {\frac{\pi }{{[x - 1]}}} \right)$ is (where $[.]$ denotes $G.I.F.$)
If a function $f(x)$ is such that $f\left( {x + \frac{1}{x}} \right) = {x^2} + \frac{1}{{{x^2}}};$ then $(fof )$ $\sqrt {11} )$ =
Domain of the function $f(x) = {\sin ^{ - 1}}(1 + 3x + 2{x^2})$ is
The function $f(x) = \;|px - q|\; + r|x|,\;x \in ( - \infty ,\;\infty )$, where $p > 0,\;q > 0,\;r > 0$ assumes its minimum value only at one point, if
If the domain and range of $f(x){ = ^{9 - x}}{C_{x - 1}}$ contains $m$ and $n$ elements respectively, then