Set of all values of $x$ satisfying
$\frac{{{x^4} - 4{x^3} + 3{x^2}}}{{({x^2} - 4)({x^2} - 7x + 10)}} \ge 0$
$\left( { - \infty ,\, - 2} \right)\,\, \cup \,\,[1,\,3]\,\, \cup \,\,(5,\infty )$
$\left( { - \infty ,\, - 2} \right)\,\,\, \cup \,\,\,[0,\,1]\,\,\, \cup \,\,\left( {2,3} \right]\,\, \cup \,\,(5,\infty )$
$\left( { - \infty ,\, - 2} \right)\,\,\, \cup \,\,\,[1,\,3]\,\,\, \cup \,\,(5,\infty )\,\, \cup \,\,\{ 0\} $
$\left( { - \infty ,\, - 2} \right)\,\,\, \cup \,\,\,[1,\,2]\,\,\, \cup \,\,\left( {2,3} \right]\,\,\, \cup \,\,(5,\infty )\,\, \cup \,\,\{ 0\} $
Let $f : R \rightarrow R$ be a function defined by $f ( x )=$ $\log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x)+m-2\}$, for some $m$, such that the range of $f$ is $[0,2]$. Then the value of $m$ is $............$
Tho damnin of tho finction $\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 x^{2}-1}\right)}{\pi}\right)$ is
If domain of the function $\log _e\left(\frac{6 x^2+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^2-3 x+4}{3 x-5}\right)$ is $(\alpha, \beta) \cup(\gamma, \delta]$, then $18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)$ is equal to $....$.
The value of $\sum \limits_{n=0}^{1947} \frac{1}{2^n+\sqrt{2^{1994}}}$ is equal to
Let $c, k \in R$. If $f(x)=(c+1) x^{2}+\left(1-c^{2}\right) x+2 k$ and $f(x+y)=f(x)+f(y)-x y$, for all $x, y \in R$, then the value of $|2( f (1)+ f (2)+ f (3)+\ldots \ldots+ f (20)) \mid$ is equal to