સાબિત કરો કે, $\Delta=\left|\begin{array}{ccc}
(y+z)^{2} & x y & z x \\
x y & (x+z)^{2} & y z \\
x z & y z & (x+y)^{2}
\end{array}\right|=2 x y z(x+y+z)^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Applying $\mathrm{R}_{1} \rightarrow x \mathrm{R}_{1}, \mathrm{R}_{2} \rightarrow y \mathrm{R}_{2}, \mathrm{R}_{3} \rightarrow z \mathrm{R}_{3}$ to $\Delta$ and dividing by $x y z,$ we get

$\Delta=\frac{1}{x y z}\left|\begin{array}{ccc}
x(y+z)^{2} & x^{2} y & x^{2} z \\
x y^{2} & y(x+z)^{2} & y^{2} z \\
x z^{2} & y z^{2} & z(x+y)^{2}
\end{array}\right|$

Taking common factors $x, y, z$ from $\mathrm{C}_{1} \mathrm{C}_{2}$ and $\mathrm{C}_{3},$ respectively, we get

$\Delta=\frac{x y z}{x y z}\left|\begin{array}{ccc}
(y+z)^{2} & x^{2} & x^{2} \\
y^{2} & (x+z)^{2} & y^{2} \\
z^{2} & z^{2} & (x+y)^{2}
\end{array}\right|$

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}, \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1},$ we have

$\Delta=\left|\begin{array}{ccc}
(y+z)^{2} & x^{2}-(y+z)^{2} & x^{2}-(y+z)^{2} \\
y^{2} & (x+z)^{2}-y^{2} & 0 \\
z^{2} & 0 & (x+y)^{2}-z^{2}
\end{array}\right|$

Taking common factor $(x+y+z)$ from $\mathrm{C}_{2}$ and $\mathrm{C}_{3},$ we have

$\Delta=(x+y+z)^{2}\left|\begin{array}{ccc}
(y+z)^{2} & x-(y+z) & x-(y+z) \\
y^{2} & (x+z)-y & 0 \\
z^{2} & 0 & (x+y)-z
\end{array}\right|$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right),$ we have

$\Delta=(x+y+z)^{2}\left|\begin{array}{ccc}
2 y z & -2 z & -2 y \\
y^{2} & x-y+z & 0 \\
z^{2} & 0 & x+y-z
\end{array}\right|$

Applying $\mathrm{C}_{2} \rightarrow\left(\mathrm{C}_{2}+\frac{1}{y} \mathrm{C}_{1}\right)$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\frac{1}{z} \mathrm{C}_{1},$ we get

$\Delta=(x+y+z)^{2}\left|\begin{array}{ccc}
2 y z & 0 & 0 \\
y^{2} & x+z & \frac{y^{2}}{z} \\
z^{2} & \frac{z^{2}}{y} & x+y
\end{array}\right|$

Finally expanding along $\mathrm{R}_{1},$ we have

$\Delta $$=(x+y+z)^{2}(2 y z)[(x+z)(x+y)-y z]$

$=(x+y+z)^{2}(2 y z)\left(x^{2}+x y+x z\right) $
$=(x+y+z)^{3}(2 x y z)$

Similar Questions

જો $a, b, c,$ એ શૂન્યતર સંકર સંખ્યા છે કે જે  $a^2 + b^2 + c^2 = 0$ અને $\left| {\begin{array}{*{20}{c}}
{{b^2} + {c^2}}&{ab}&{ac}\\
{ab}&{{c^2} + {a^2}}&{bc}\\
{ac}&{bc}&{{a^2} + {b^2}}
\end{array}} \right| = k{a^2}{b^2}{c^2},$ નું પાલન કરે છે તો $k$ મેળવો.

  • [AIEEE 2012]

$\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$ નું મૂલ્ય શોધો.

સાબિત કરો કે $\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|=0$

જો વિધેય $f :\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \rightarrow R ,$  :

$f (\theta)=\left|\begin{array}{ccc}-\sin ^{2} \theta & -1-\sin ^{2} \theta & 1 \\ -\cos ^{2} \theta & -1-\cos ^{2} \theta & 1 \\ 12 & 10 & -2\end{array}\right|$ ની ન્યૂનતમ અને મહત્તમ કિમતો અનુક્રમે $m$ અને $M$ હોય તો $( m , M )$ ની કિમત શોધો 

  • [JEE MAIN 2020]

નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$