સાબિત કરો કે $\left|\begin{array}{ccc}a & a+b & a+b+c \\ 2 a & 3 a+2 b & 4 a+3 b+2 c \\ 3 a & 6 a+3 b & 10 a+6 b+3 c\end{array}\right|=a^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Solution Applying operations $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1}$ to the given determinant $\Delta$, we have

$\Delta  = \left| {\begin{array}{*{20}{c}}
  a&{a + b}&{a + b + c} \\ 
  0&a&{2a + b} \\ 
  0&{3a}&{7a + 3b} 
\end{array}} \right|$

Now applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{2},$ we get

$\Delta=\left|\begin{array}{ccc}
a & a+b & a+b+c \\
0 & a & 2 a+b \\
0 & 0 & a
\end{array}\right|$

Expanding along $C_{1},$ we obtain

$\Delta  = a\left| {\begin{array}{*{20}{c}}
  a&{2a + b} \\ 
  0&a 
\end{array}} \right| + 0 + 0$

$ = a\left( {{a^2} - 0} \right) = a\left( {{a^2}} \right) = {a^3}$

Similar Questions

જો $\mathrm{a, b, c}$ પૈકી પ્રત્યેક બે અસમાન અને પ્રત્યેક ધન હોય, તો સાબિત કરો કે નિશ્ચાયક $\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ નું મૂલ્ય ઋણ છે.

નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી  સાબિત કરો કે, $\left|\begin{array}{ccc}3 a & -a+b & -a+c \\ -b+a & 3 b & -b+c \\ -c+a & -c+b & 3 c\end{array}\right|=3(a+b+c)(a b+b c+c a)$

$2\,\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^2} - bc}&{{b^2} - ac}&{{c^2} - ab}\end{array}\,} \right| = $

જો $\Delta = \left| {\,\begin{array}{*{20}{c}}a&b&c\\x&y&z\\p&q&r\end{array}\,} \right|$, તો $\left| {\,\begin{array}{*{20}{c}}{ka}&{kb}&{kc}\\{kx}&{ky}&{kz}\\{kp}&{kq}&{kr}\end{array}\,} \right|$=

$\left| {\,\begin{array}{*{20}{c}}{b + c}&{a - b}&a\\{c + a}&{b - c}&b\\{a + b}&{c - a}&c\end{array}\,} \right| = $