Sixty four spherical rain drops of equal size are falling vertically through air with terminal velocity $1.5\, m/s$. All of the drops coalesce to form a big spherical drop, then terminal velocity of big drop is ........... $m/s$

  • A

    $8$

  • B

    $16$

  • C

    $24$

  • D

    $32$

Similar Questions

If a ball of steel (density $\rho=7.8 \;gcm ^{-3}$) attains a terminal velocity of $10 \;cms ^{-1}$ when falling in a tank of water (coefficient of viscosity $\eta_{\text {water }}=8.5 \times 10^{-4} \;Pa - s$ ) then its terminal velocity in glycerine $\left(\rho=12 gcm ^{-3}, \eta=13.2\right)$ would be nearly

  • [AIEEE 2011]

Why is dust particles settled down on floor in a closed room ? Explain.

Which of the following option correctly describes the variation of the speed $v$  and acceleration $'a'$  of a point mass falling vertically in a viscous medium that applies a force $F = -kv,$ where $'k'$  is a constant, on the body? (Graphs are schematic and not drawn to scale)

  • [JEE MAIN 2016]

Consider two solid spheres $\mathrm{P}$ and $\mathrm{Q}$ each of density $8 \mathrm{gm} \mathrm{cm}^{-3}$ and diameters $1 \mathrm{~cm}$ and $0.5 \mathrm{~cm}$, respectively. Sphere $\mathrm{P}$ is dropped into a liquid of density $0.8 \mathrm{gm} \mathrm{cm}^{-3}$ and viscosity $\eta=3$ poiseulles. Sphere $Q$ is dropped into a liquid of density $1.6 \mathrm{gm} \mathrm{cm}^{-3}$ and viscosity $\eta=2$ poiseulles. The ratio of the terminal velocities of $\mathrm{P}$ and $\mathrm{Q}$ is 

  • [IIT 2016]

A particle released from rest is falling through a thick fluid under gravity. The fluid exerts a resistive force on the particle proportional to the square of its speed. Which one of the following graphs best depicts the variation of its speed $v$ with time $t$ ?

  • [KVPY 2012]