Solution of the equation  ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution

  • A

    $3$

  • B

    $2$

  • C

    $1.5$

  • D

    $2/3$

Similar Questions

The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has

$\root 4 \of {(17 + 12\sqrt 2 )} = $

${a^{m{{\log }_a}n}} = $

The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is

If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=