Solution of the equation ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution
$3$
$2$
$1.5$
$2/3$
The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $
$\root 4 \of {(17 + 12\sqrt 2 )} = $
The value of the fifth root of $10^{10^{10}}$ is
${{\sqrt 2 } \over {\sqrt {(2 + \sqrt 3 )} - \sqrt {(2 - \sqrt 3 } )}} = $
The value of ${{15} \over {\sqrt {10} + \sqrt {20} + \sqrt {40} - \sqrt 5 - \sqrt {80} }}$ is