Solution of the equation  ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution

  • A

    $3$

  • B

    $2$

  • C

    $1.5$

  • D

    $2/3$

Similar Questions

$\root 4 \of {(17 + 12\sqrt 2 )} = $

Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are

$\sqrt {(3 + \sqrt 5 )} $ is equal to

If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$

${{\sqrt {(5/2)} + \sqrt {(7 - 3\sqrt 5 )} } \over {\sqrt {(7/2)} + \sqrt {(16 - 5\sqrt 7 )} }}=$