Solution of the equation ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution
$3$
$2$
$1.5$
$2/3$
The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has
$\root 4 \of {(17 + 12\sqrt 2 )} = $
${a^{m{{\log }_a}n}} = $
The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is
If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=