Solution of the equation ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution
$3$
$2$
$1.5$
$2/3$
$\root 4 \of {(17 + 12\sqrt 2 )} = $
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are
$\sqrt {(3 + \sqrt 5 )} $ is equal to
If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$
${{\sqrt {(5/2)} + \sqrt {(7 - 3\sqrt 5 )} } \over {\sqrt {(7/2)} + \sqrt {(16 - 5\sqrt 7 )} }}=$