Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are
$4.5$
$1$
$-1$
$0$
Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$
If $x = 3 - \sqrt {5,} $ then ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=
The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $
If ${({a^m})^n} = {a^{{m^n}}}$, then the value of $'m'$ in terms of $'n'$ is