Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are

  • A

    $4.5$

  • B

    $1$

  • C

    $-1$

  • D

    $0$

Similar Questions

The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is

If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=

Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are

${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$

Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.