Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are
$4.5$
$1$
$-1$
$0$
$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $
If ${\left( {{2 \over 3}} \right)^{x + 2}} = {\left( {{3 \over 2}} \right)^{2 - 2x}},$then $x =$
Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.
${a^{m{{\log }_a}n}} = $
If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $