- Home
- Standard 11
- Mathematics
4-1.Complex numbers
medium
निम्नलिखित समीकरणों में से प्रत्येक को हल कीजिए
$\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$
A
$\frac{\sqrt{2} \pm \sqrt{34} i}{2 \sqrt{3}}$
B
$\frac{\sqrt{2} \pm \sqrt{34} i}{2 \sqrt{3}}$
C
$\frac{\sqrt{2} \pm \sqrt{34} i}{2 \sqrt{3}}$
D
$\frac{\sqrt{2} \pm \sqrt{34} i}{2 \sqrt{3}}$
Solution
The given quadratic equation is $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$
On comparing the given equation with $a x^{2}+b x+c=0$
We obtain $a=\sqrt{3}, b=-\sqrt{2},$ and $c=3 \sqrt{3}$
Therefore, the discriminant of the given equation is
$D=b^{2}-4 a c=(-\sqrt{2})^{2}-4(\sqrt{3})(3 \sqrt{3})=2-36=-34$
Therefore, the required solutions are
$\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-\sqrt{2}) \pm \sqrt{-34}}{2 \times \sqrt{3}}=\frac{\sqrt{2} \pm \sqrt{34} i}{2 \sqrt{3}} \quad[\sqrt{-1}=i]$
Standard 11
Mathematics