- Home
- Standard 12
- Mathematics
निम्नलिखित समीकरण निकाय को हल कीजिए:
$ 2 x+5 y=1 \,;\,3 x+2 y=7$
$x=3, y=-1$
$x=3, y=1$
$x=-3, y=-1$
$x=-3, y=1$
Solution
Solution The system of equations can be written in the form $A X=B$, where
$A=\left[\begin{array}{ll}
2 & 5 \\
3 & 2
\end{array}\right], X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{l}
1 \\
7
\end{array}\right]$
Now, $|\mathrm{A}|=-11 \neq 0,$ Hence, $\mathrm{A}$ is nonsingular matrix and so has a unique solution.
Note that $A^{-1}=-\frac{1}{11}\left[\begin{array}{cc}2 & -5 \\ -3 & 2\end{array}\right]$
${{\text{ Therefore}}}$ $X=A^{-1} B=-\frac{1}{11}\left[\begin{array}{cc}2 & -5 \\ -3 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 7\end{array}\right]$
${\text{i}}{\text{.e}}{\text{.}}$ $\left[ {\begin{array}{*{20}{l}}
x \\
y
\end{array}} \right] = – \frac{1}{{11}}\left[ {\begin{array}{*{20}{l}}
{ – 33} \\
{11}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ – 1}
\end{array}} \right]$
Hence $x=3, y=-1$