Speed of a transverse wave on a straight wire (mass $6.0\; \mathrm{g}$, length $60\; \mathrm{cm}$ and area of cross-section $1.0\; \mathrm{mm}^{2}$ ) is $90\; \mathrm{ms}^{-1} .$ If the Young's modulus of wire is $16 \times 10^{11}\; \mathrm{Nm}^{-2},$ the extension of wire over its natural length is

  • [JEE MAIN 2020]
  • A

    $0.02\; mm$

  • B

    $0.04\; mm$

  • C

    $0.03\; mm$

  • D

    $0.01\; mm$

Similar Questions

A composition string is made up by joining two strings of different masses per unit length $\rightarrow \mu$ and $4\mu$ . The composite string is under the same tension. A transverse wave pulse $: Y = (6 mm) \,\,sin\,\,(5t + 40x),$ where $‘t’$ is in seconds and $‘x’$ in meters, is sent along the lighter string towards the joint. The joint is at $x = 0$. The equation of the wave pulse reflected from the joint is

A uniform string oflength $20\ m$ is suspended from a rigid support. A short wave pulse is introduced at its lowest end. It starts moving up the string. The time taken to reach the supports is (take $g= 10 $ $ms^{-2}$ )

  • [JEE MAIN 2016]

A string of mass $m$ and length $l$ hangs from ceiling as shown in the figure. Wave in string moves upward. $v_A$ and $v_B$ are the speeds of wave at $A$ and $B$ respectively. Then $v_B$ is

The transverse displacement of a string (clamped at its both ends) is given by

$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)$

where $x$ and $y$ are in $m$ and $t$ in $s$. The length of the string is $1.5\; m$ and its mass is $3.0 \times 10^{-2}\; kg$

Answer the following:

$(a)$ Does the function represent a travelling wave or a stationary wave?

$(b)$ Interpret the wave as a superposition of two waves travelling in opposite directions. What is the wavelength, frequency, and speed of each wave?

$(c)$ Determine the tension in the string.

A transverse wave travels on a taut steel wire with a velocity of ${v}$ when tension in it is $2.06 \times 10^{4} \;\mathrm{N} .$ When the tension is changed to $T$. the velocity changed to $\frac v2$. The value of $\mathrm{T}$ is close to

  • [JEE MAIN 2020]