Speed of a transverse wave on a straight wire (mass $6.0\; \mathrm{g}$, length $60\; \mathrm{cm}$ and area of cross-section $1.0\; \mathrm{mm}^{2}$ ) is $90\; \mathrm{ms}^{-1} .$ If the Young's modulus of wire is $16 \times 10^{11}\; \mathrm{Nm}^{-2},$ the extension of wire over its natural length is
$0.02\; mm$
$0.04\; mm$
$0.03\; mm$
$0.01\; mm$
The linear density of a vibrating string is $1.3 \times 10^{-4}\, kg/m.$ A transverse wave is propagating on the string and is described by the equation $Y = 0.021\, \sin (x + 30t)$ where $x$ and $y$ are measured in meter and $t$ in second the tension in the string is ..... $N$
The speed of a transverse wave passing through a string of length $50 \;cm$ and mass $10\,g$ is $60\,ms ^{-1}$. The area of cross-section of the wire is $2.0\,mm ^{2}$ and its Young's modulus is $1.2 \times 10^{11}\,Nm ^{-2}$. The extension of the wire over its natural length due to its tension will be $x \times 10^{-5}\; m$. The value of $x$ is $...$
Mechanical waves on the surface of a liquid are
Equation of travelling wave on a stretched string of linear density $5\,g/m$ is $y = 0.03\,sin\,(450\,t -9x)$ where distance and time are measured in $SI$ united. The tension in the string is ... $N$
The transverse displacement of a string (clamped at its both ends) is given by
$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)$
where $x$ and $y$ are in $m$ and $t$ in $s$. The length of the string is $1.5\; m$ and its mass is $3.0 \times 10^{-2}\; kg$
Answer the following:
$(a)$ Does the function represent a travelling wave or a stationary wave?
$(b)$ Interpret the wave as a superposition of two waves travelling in opposite directions. What is the wavelength, frequency, and speed of each wave?
$(c)$ Determine the tension in the string.