11.Thermodynamics
hard

Starting at temperature $300\; \mathrm{K},$ one mole of an ideal diatomic gas $(\gamma=1.4)$ is first compressed adiabatically from volume $\mathrm{V}_{1}$ to $\mathrm{V}_{2}=\frac{\mathrm{V}_{1}}{16} .$ It is then allowed to expand isobarically to volume $2 \mathrm{V}_{2} \cdot$ If all the processes are the quasi-static then the final temperature of the gas (in $\left. \mathrm{K}\right)$ is (to the nearest integer)

A

$1818$

B

$2020$

C

$1576$

D

$1734$

(JEE MAIN-2020)

Solution

$\mathrm{PV} ^\gamma=$ constant

$\mathrm{TV} ^{\gamma-1}=\mathrm{C}$

$300 \times \mathrm{V}^{\frac{7}{5}-1}=\mathrm{T}_{2}\left(\frac{\mathrm{V}}{16}\right)^{\frac{7}{5}-1}$

$300 \times 2^{4 \times \frac{2}{5}}=\mathrm{T}_{2}$

Isobaric process

$\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}$

$\mathrm{V}_{2}=\mathrm{kT}_{2}$

$2 \mathrm{V}_{2}=\mathrm{KT}_{\mathrm{f}}$

$\frac{1}{2}=\frac{\mathrm{T}_{2}}{\mathrm{T}_{\mathrm{f}}} \Rightarrow \mathrm{T}_{\mathrm{f}}=2 \mathrm{T}_{2}$

$\mathrm{T}_{\mathrm{f}}=2 \times 300 \times 2^{\frac{8}{5}}=1818.85$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.