Mathematical Reasoning
medium

Consider the following statements:

$P :$ Ramu is intelligent

$Q $: Ramu is rich

$R:$ Ramu is not honest

The negation of the statement "Ramu is intelligent and honest if and only if Ramu is not rich" can be expressed as.

A

$(( P \wedge(\sim R )) \wedge Q ) \wedge((\sim Q ) \wedge((\sim P ) \vee R ))$

B

$(( P \wedge R ) \wedge Q ) \vee((\sim Q ) \wedge((\sim P ) \vee(\sim R )))$

C

$(( P \wedge R ) \wedge Q ) \wedge((\sim Q ) \wedge((\sim P ) \vee(\sim R )))$

D

$(( P \wedge(\sim R )) \wedge Q ) \vee((\sim Q ) \wedge((\sim P ) \vee R ))$

(JEE MAIN-2022)

Solution

$P$ : Ramu is intelligent

$Q$ : Ramu is rich

$R$ : Ramu is not honest

Given statement, "Ramu is intelligent and honest if and only if Ramu is not rich"

$=(P \wedge \sim R) \Leftrightarrow \sim Q$

So, negation of the statement is

$\sim[(P \wedge \sim R) \Leftrightarrow \sim Q]$

$=\sim[\{\sim(P \wedge \sim R) \vee \sim Q\} \wedge\{Q \vee(P \wedge \sim R)\}]$

$4=((P \wedge \sim R) \wedge Q) \vee(\sim Q \wedge(\sim P \vee R))$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.