Negation is $“2 + 3 = 5$ and $8 < 10”$ is
$2 + 3 \neq 5$ and $< 10$
$2 + 3 = 5$ and $8 \nless10$
$2 + 3 \neq 5$ or $8 \nless10$
None of these
The negation of the statement $q \wedge \left( { \sim p \vee \sim r} \right)$
The statement $[(p \wedge q) \rightarrow p] \rightarrow (q \wedge \sim q)$ is
For integers $m$ and $n$, both greater than $1$ , consider the following three statements
$P$ : $m$ divides $n$
$Q$ : $m$ divides $n^2$
$R$ : $m$ is prime,
then true statement is
$(p\; \wedge \sim q) \wedge (\sim p \vee q)$ is