વિધાન $-1$ : સમીકરણ $x\, log\, x = 2 - x$ ની $x$ ના ઓછાંમાં ઓછી એક કિમંત $1$ અને $2$ ની વચ્ચે હશે .
વિધાન $-2$ : વિધેય $f(x) = x\, log\, x$ એ અંતરાલ $[1, 2]$ માં વધતું વિધેય છે અને $g (x) = 2 -x$ એ અંતરાલ $[ 1 , 2]$ માં ઘટતું વિધેય છે અને આ વિધેય ના આલેખો છેદબિંદુએ $[ 1 , 2]$ માં આવેલ છે .
વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી છે.
વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી નથી.
વિધાન $- 1$ ખોટું છે. વિધાન$- 2$ સાચું છે.
વિધાન $- 1$ સાચું છે. વિધાન $- 2$ ખોટું છે.
જો ચલિત વિધેય નો વક્ર બિંદુ $(3,4)$ આગળ સમિત હોય તો $\sum\limits_{r = 0}^6 {f(r) + f(3)} $ ની કિમત ...... થાય.
વિધેય $y(x)$ ને ${2^x} + {2^y} = 2$ સબંધ દ્વારા વ્યાખ્યાયિત હોય તો તેનો પ્રદેશ મેળવો.
જો $f(a) = a^2 + a+ 1$ હોય તો સમીકરણ $f(a^2) = 3f(a)$ ના ઉકેલોની સંખ્યા ........... છે.
વિધેય $f:\{1,2,3,4\} \to \{1,2,3,4,5,6\}$ કેટલા મળે કે જેથી $f (1)+ f (2)= f (3)$ થાય.
વિધેય $f(x) = \log \cos 2x + \sin 4x$ નુ આવર્તમાન મેળવો.