Statement $I:$ If three forces $\vec{F}_{1}, \vec{F}_{2}$ and $\vec{F}_{3}$ are represented by three sides of a triangle and $\overrightarrow{{F}}_{1}+\overrightarrow{{F}}_{2}=-\overrightarrow{{F}}_{3}$, then these three forces are concurrent forces and satisfy the condition for equilibrium.
Statement $II:$ A triangle made up of three forces $\overrightarrow{{F}}_{1}, \overrightarrow{{F}}_{2}$ and $\overrightarrow{{F}}_{3}$ as its sides taken in the same order, satisfy the condition for translatory equilibrium.
In the light of the above statements, choose the most appropriate answer from the options given below:
Statement$-I$ is false but Statement$-II$ is true
Statement$-I$ is true but Statement$-II$ is false
Both Statement$-I$ and Statement$-II$ are false
Both Statement$-I$ and Statement$-II$ are true.
At what angle must the two forces $(x + y)$ and $(x -y)$ act so that the resultant may be $\sqrt {({x^2} + {y^2})} $
Two vectors $\overrightarrow{ A }$ and $\overrightarrow{ B }$ have equal magnitudes. If magnitude of $\overrightarrow{ A }+\overrightarrow{ B }$ is equal to two times the magnitude of $\overrightarrow{ A }-\overrightarrow{ B }$, then the angle between $\overrightarrow{ A }$ and $\overrightarrow{ B }$ will be .......................
Which of the following relations is true for two unit vectors $\hat{ A }$ and $\hat{ B }$ making an angle $\theta$ to each other$?$
Which of the following forces cannot be a resultant of $5\, N$ and $7\, N$ force...........$N$