- Home
- Standard 11
- Physics
Statement $I:$ If three forces $\vec{F}_{1}, \vec{F}_{2}$ and $\vec{F}_{3}$ are represented by three sides of a triangle and $\overrightarrow{{F}}_{1}+\overrightarrow{{F}}_{2}=-\overrightarrow{{F}}_{3}$, then these three forces are concurrent forces and satisfy the condition for equilibrium.
Statement $II:$ A triangle made up of three forces $\overrightarrow{{F}}_{1}, \overrightarrow{{F}}_{2}$ and $\overrightarrow{{F}}_{3}$ as its sides taken in the same order, satisfy the condition for translatory equilibrium.
In the light of the above statements, choose the most appropriate answer from the options given below:
Statement$-I$ is false but Statement$-II$ is true
Statement$-I$ is true but Statement$-II$ is false
Both Statement$-I$ and Statement$-II$ are false
Both Statement$-I$ and Statement$-II$ are true.
Solution

Here $\overrightarrow{{F}}_{1}+\overrightarrow{{F}}_{2}+\overrightarrow{{F}}_{3}=0$
$\overrightarrow{{F}}_{1}+\overrightarrow{{F}}_{2}=-\overrightarrow{{F}}_{3}$
Since $\overrightarrow{{F}}_{\text {net }}=0$ (equilibrium)
Both statements correct