વિધાન $I:$ જો ત્રણ બળો $\vec{F}_{1}, \vec{F}_{2}$ અને $\vec{F}_{3}$ ને ત્રિકોણની ત્રણ બાજુ વડે દર્શાવવામાં આવે છે અને $\overrightarrow{{F}}_{1}+\overrightarrow{{F}}_{2}=-\overrightarrow{{F}}_{3}$ હોય, તો આ ત્રણ બળો સમવર્તી બળો અને તે સમતોલન સ્થિતિને સંતોષે છે.

વિધાન $II:$ $\overrightarrow{{F}}_{1}, \overrightarrow{{F}}_{2}$ અને $\overrightarrow{{F}}_{3}$ બળો ત્રિકોણની બાજુ હોય, તો તે સમાન ક્રમમાં હોય, તો તે રેખીય સમતોલન સ્થિતિને સંતોષે છે.

ઉપર આપેલા વિધાનો માટે નીચેમાંથી યોગ્ય વિકલ્પ પસંદ કરો. 

  • [JEE MAIN 2021]
  • A

    વિધાન $-I$ ખોટું છે પરંતુ વિધાન $-II$ સાચું છે

  • B

    વિધાન $-I$ સાચું છે પરંતુ વિધાન $-II$ ખોટું છે

  • C

    બંને વિધાન $-I$ અને વિધાન $-II$ ખોટા છે

  • D

    બંને વિધાન $-I$ અને વિધાન $-II$ સાચાં છે. 

Similar Questions

બે સદિશોના પરિણામી સદિશનું મહત્તમ મૂલ્ય $17\, unit$ અને ન્યુનતમ મૂલ્ય $7\, unit$ છે,તો આ બંને સદિશો લંબ હોય,તો તેના પરિણામી સદિશનું મૂલ્ય કેટલું થશે?

સદિશ $A$ અને $B$ નો પરિણામી સદિશ,સદિશ $A$ ને લંબ છે,અને તેનું મૂલ્ય $B$ સદિશથી અડધું છે,તો સદિશ $A$ અને $ B$ વચ્ચેનો ખૂણો ....... $^o$ થશે.

$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $'a'$ અને તેનું પરિકેન્દ્ર $O$ છે. તો $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=.......$

જો $\,{\rm{|}}\mathop {\rm{A}}\limits^ \to  \,\, + \;\,\mathop B\limits^ \to  \,|\,\, = \,\,\,{\rm{|}}\mathop {\rm{A}}\limits^ \to  \,\, - \;\,\mathop B\limits^ \to  \,|\,$ હોય $\vec A $ અને $\vec B $ વચ્ચેનો ખૂણો ........ $^o$

સદિશોના સરવાળા માટેની બે રીતોના નામ આપો. તથા સદિશોના સરવાળા માટે સમાંતરબાજુ ચતુષ્કોણનો નિયમ લખો.