Stokes' law states that the viscous drag force $F$ experienced by a sphere of radius $a$, moving with a speed $v$ through a fluid with coefficient of viscosity $\eta$, is given by $F=6 \pi \eta a v$. If this fluid is flowing through a cylindrical pipe of radius $r$, length $l$ and pressure difference of $p$ across its two ends, then the volume of water $V$ which flows through the pipe in time $t$ can be written as $\frac{V}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$, where $k$ is a dimensionless constant. Correct values of $a, b$ and $c$ are
$a=1, b=-1, c=4$
$a=-1, b=1, c=4$
$a=2, b=-1, c=3$
$a=1, b=-2, c=-4$
Consider following statements
$(A)$ Any physical quantity have more than one unit
$(B)$ Any physical quantity have only one dimensional formula
$(C)$ More than one physical quantities may have same dimension
$(D)$ We can add and subtract only those expression having same dimension
Number of correct statement is
In the equation $y = pq$ $tan\,(qt)$, $y$ represents position, $p$ and $q$ are unknown physical quantities and $t$ is time. Dimensional formula of $p$ is
The dimensions of $RC$ is
($C$ and $R$ represent capacitance and resistance respectively)
Which of the following quantities have dimensions of $\frac{{\pi {{\Pr }^4}}}{{3Ql}}:$ ( $Q =$ Volume flow rate in $m^3/s$ and $P =$ pressure)
If e is the electronic charge, $c$ is the speed of light in free space and $h$ is Planck's constant, the quantity $\frac{1}{4 \pi \varepsilon_{0}} \frac{| e |^{2}}{h c}$ has dimensions of .......