Stokes' law states that the viscous drag force $F$ experienced by a sphere of radius $a$, moving with a speed $v$ through a fluid with coefficient of viscosity $\eta$, is given by $F=6 \pi \eta a v$. If this fluid is flowing through a cylindrical pipe of radius $r$, length $l$ and pressure difference of $p$ across its two ends, then the volume of water $V$ which flows through the pipe in time $t$ can be written as $\frac{V}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$, where $k$ is a dimensionless constant. Correct values of $a, b$ and $c$ are
$a=1, b=-1, c=4$
$a=-1, b=1, c=4$
$a=2, b=-1, c=3$
$a=1, b=-2, c=-4$
Which of the following is dimensionally incorrect?
If velocity of light $c$, Planck’s constant $h$ and gravitational constant $G$ are taken as fundamental quantities, then express time in terms of dimensions of these quantities.
The $SI$ unit of energy is $J=k g\, m^{2} \,s^{-2} ;$ that of speed $v$ is $m s^{-1}$ and of acceleration $a$ is $m s ^{-2} .$ Which of the formulae for kinetic energy $(K)$ given below can you rule out on the basis of dimensional arguments ( $m$ stands for the mass of the body ):
$(a)$ $K=m^{2} v^{3}$
$(b)$ $K=(1 / 2) m v^{2}$
$(c)$ $K=m a$
$(d)$ $K=(3 / 16) m v^{2}$
$(e)$ $K=(1 / 2) m v^{2}+m a$
If $P$ represents radiation pressure, $c$ represents speed of light and $Q$ represents radiation energy striking a unit area per second, then non-zero integers $x,\,y$ and $z$ such that ${P^x}{Q^y}{c^z}$ is dimensionless, are
If the constant of gravitation $(G)$, Planck's constant $(h)$ and the velocity of light $(c)$ be chosen as fundamental units. The dimension of the radius of gyration is