Substance $A$ has atomic mass number $16$ and half life of $1$ day. Another substance $B$ has atomic mass number $32$ and half life of $\frac{1}{2}$ day. If both $A$ and $B$ simultaneously start undergo radio activity at the same time with initial mass $320\,g$ each, how many total atoms of $A$ and $B$ combined would be left after $2$ days $.........\times 10^{24}$
$3.38$
$6.76$
$67.6$
$1.69$
The half-life of $B{i^{210}}$ is $5\, days$. What time is taken by $(7/8)^{th}$ part of the sample to decay.........$days$
$x$ fraction of a radioactive sample decay in $t$ time. How much fraction will decay in $2t$ time
At time $t=0$ some radioactive gas is injected into a sealed vessel. At time $T$ some more of the gas is injected into the vessel. Which one of the following graphs best represents the logarithm of the activity $A$ of the gas with time $t$ ?
Give a brief explanation about radioactivity.
The decay constant for a radioactive nuclide is $1.5 \times 10^{-5} s ^{-1}$. Atomic of the substance is $60\,g$ mole $^{-1},\left( N _{ A }=6 \times 10^{23}\right)$. The activity of $1.0\,\mu g$ of the substance is $.......\,\times 10^{10}\,Bq$