- Home
- Standard 11
- Mathematics
4-1.Complex numbers
hard
Sum of squares of modulus of all the complex numbers $z$ satisfying $\bar{z}=i z^{2}+z^{2}-z$ is equal to
A
$50$
B
$2$
C
$29$
D
$9$
(JEE MAIN-2022)
Solution
$z +\overline{ z }=i z ^{2}+ z ^{2}$
Consider $z=x+i y$
$2 x=(i+1)\left(x^{2}-y^{2}+2 x y i\right)$
$\Rightarrow 2 x=x^{2}-y^{2}-2 x y \text { and } x^{2}-y^{2}+2 x y=0$
$\Rightarrow 2 x=-4 x y$
$\Rightarrow x=0 \text { or } y=\frac{-1}{2}$
Case $1: x=0 \Rightarrow y=0$ here $z=0$
$\text { Case } 2: y=\frac{-1}{2}$
$\Rightarrow 4 x^{2}-4 x-1=0$
$(2 x-1)^{2}=2$
$2 x-1=\pm \sqrt{2}$
$x=\frac{1 \pm \sqrt{2}}{2}$
Here $z =\frac{1+\sqrt{2}}{2}-\frac{ i }{2}$ or $z =\frac{1-\sqrt{2}}{2}-\frac{ i }{2}$
Sum of squares of modulus of $z$
$=0+\frac{(1+\sqrt{2})^{2}+1}{4}+\frac{(1-\sqrt{2})^{2}+1}{4}=\frac{8}{4}=2$
Standard 11
Mathematics