- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
मान लें कि $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ एक वास्तविक आव्यूह है, जिसके अवयव अशून्य है। यदि $a d-b c=0$ और $A^2=A$ है, तब $a+d$ निम्न के बराबर है :
A
$1$
B
$2$
C
$3$
D
$44$
(KVPY-2018)
Solution
(a)
We have
$\begin{aligned} A &=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \\ A^2 &=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \\ A^2 &=\left[\begin{array}{ll}a^2+b c & a b+b d \\ a c+c d & b c+d^2\end{array}\right] \end{aligned}$
Given, $A^2=A$ and $a d-b c=0$
$\therefore\left[\begin{array}{ll} a^2+b c & a b+b d \\ a c+c d & b c+d^2 \end{array}\right]=\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]$
$a b+b d =b$
$b(a+d) =b$
$a+d =1$
Standard 12
Mathematics
Similar Questions
medium