Suppose $a, b, c$ are positive integers such that $2^a+4^b+8^c=328$. Then, $\frac{a+2 b+3 c}{a b c}$ is equal to

  • [KVPY 2015]
  • A

    $\frac{1}{2}$

  • B

    $\frac{5}{8}$

  • C

    $\frac{17}{24}$

  • D

    $\frac{5}{6}$

Similar Questions

Let $\alpha ,\beta $ be the roots of ${x^2} + (3 - \lambda )x - \lambda = 0.$ The value of $\lambda $ for which ${\alpha ^2} + {\beta ^2}$ is minimum, is

If the graph of $y = ax^3 + bx^2 + cx + d$ is symmetric about the line $x = k$ then

The number of non-negative integer solutions of the equations $6 x+4 y+z=200$ and $x+y+z=100$ is

  • [KVPY 2019]

Let $x_1,x_2,x_3 \in R-\{0\} $ ,$x_1 + x_2 + x_3\neq 0$ and $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}=\frac{1}{x_1+x_2+x_3}$, then  $\frac{1}{{x^n}_1+{x^n}_2+{x^n}_3} =\frac{1}{{x^n}_1}+\frac{1}{{x^n}_2}+\frac{1}{{x^n}_3}$ holds good for

If $x$ is a solution of the equation, $\sqrt {2x + 1}  - \sqrt {2x - 1}  = 1, \left( {x \ge \frac{1}{2}} \right)$ , then $\sqrt {4{x^2} - 1} $ is equal to 

  • [JEE MAIN 2016]