The number of ordered pairs $(x, y)$ of positive integers satisfying $2^x+3^y=5^{x y}$ is
$1$
$2$
$5$
Infinite
The number of real roots of the equation $5 + |2^x - 1| = 2^x(2^x - 2)$ is
The number of solutions of the equation $x ^2+ y ^2= a ^2+ b ^2+ c ^2$. where $x , y , a , b , c$ are all prime numbers, is
Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is
The number of positive integers $x$ satisfying the equation $\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}=\frac{13}{2}$ is.
If $a,b,c$ are real and ${x^3} - 3{b^2}x + 2{c^3}$ is divisible by $x - a$ and$x - b$, then