The number of ordered pairs $(x, y)$ of positive integers satisfying $2^x+3^y=5^{x y}$ is

  • [KVPY 2020]
  • A

    $1$

  • B

    $2$

  • C

    $5$

  • D

    Infinite

Similar Questions

If $|x - 2| + |x - 3| = 7$, then $x =$

The number of solutions of the equation $\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0, x\,>\,0$, is $....$

  • [JEE MAIN 2021]

The number of distinct real roots of the equation $|\mathrm{x}+1||\mathrm{x}+3|-4|\mathrm{x}+2|+5=0$, is ...........

  • [JEE MAIN 2024]

The number of real roots of the equation, $\mathrm{e}^{4 \mathrm{x}}+\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{\mathrm{x}}+1=0$ is 

  • [JEE MAIN 2020]

If $\alpha$ and $\beta$ are the distinct roots of the equation $x^{2}+(3)^{1 / 4} x+3^{1 / 2}=0$, then the value of $\alpha^{96}\left(\alpha^{12}-\right.1) +\beta^{96}\left(\beta^{12}-1\right)$ is equal to:

  • [JEE MAIN 2021]