Let $a_{n}$ be the $n^{\text {th }}$ term of a G.P. of positive terms.
If $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ and $\sum\limits_{n=1}^{100} a_{2 n}=100,$ then $\sum\limits_{n=1}^{200} a_{n}$ is equal to
$225$
$175$
$300$
$150$
If the roots of the cubic equation $a{x^3} + b{x^2} + cx + d = 0$ are in $G.P.$, then
Let ${a_n}$ be the ${n^{th}}$ term of the G.P. of positive numbers. Let $\sum\limits_{n = 1}^{100} {{a_{2n}}} = \alpha $ and $\sum\limits_{n = 1}^{100} {{a_{2n - 1}}} = \beta $, such that $\alpha \ne \beta $,then the common ratio is
What will $Rs.$ $500$ amounts to in $10$ years after its deposit in a bank which pays annual interest rate of $10 \%$ compounded annually?
The sum of an infinite geometric series is $3$. A series, which is formed by squares of its terms, have the sum also $3$. First series will be
If $a,b,c$ are in $A.P.$, then ${2^{ax + 1}},{2^{bx + 1}},\,{2^{cx + 1}},x \ne 0$ are in