The sum of first three terms of a $G.P.$ is $\frac{39}{10}$ and their product is $1 .$ Find the common ratio and the terms.
Let $\frac{a}{r}, a,$ ar be the first three terms of the $G.P.$
$\frac{a}{r}+a+a r=\frac{39}{10}$ ..........$(1)$
$\left(\frac{a}{r}\right)(a)(a r)=1$ .........$(2)$
From $(2),$ we Obtain $a^{3}=1$
$\Rightarrow a=1$ (Considering real roots only)
Substituting $a=1$ in equation $(1),$ we obtain
$\frac{1}{r}+1+r=\frac{39}{10}$
$\Rightarrow 1+r+r^{2}=\frac{39}{10} r$
$\Rightarrow 10+10 r+10 r^{2}-39 r=0$
$\Rightarrow 10 r^{2}-29 r+10=0$
$\Rightarrow 10 r^{2}-25 r-4 r+10=0$
$\Rightarrow 5 r(2 r-5)-2(2 r-5)=0$
$\Rightarrow(5 r-2)(2 r-5)=0$
$\Rightarrow r=\frac{2}{5}$ or $\frac{5}{2}$
Thus, the three terms of $G.P.$ are $\frac{5}{2}, 1$ and $\frac{2}{5}$
Three numbers are in $G.P.$ such that their sum is $38$ and their product is $1728$. The greatest number among them is
Let ${A_n} = \left( {\frac{3}{4}} \right) - {\left( {\frac{3}{4}} \right)^2} + {\left( {\frac{3}{4}} \right)^3} - ..... + {\left( { - 1} \right)^{n - 1}}{\left( {\frac{3}{4}} \right)^n}$ and $B_n \,= 1 - A_n$ . Then, the least odd natural number $p$ , so that ${B_n} > {A_n}$, for all $n \geq p$ is
The product of three geometric means between $4$ and $\frac{1}{4}$ will be
Let $x _{1}, x _{2}, x _{3}, \ldots ., x _{20}$ be in geometric progression with $x_{1}=3$ and the common ration $\frac{1}{2}$. A new data is constructed replacing each $x_{i}$ by $\left(x_{i}-i\right)^{2}$. If $\bar{x}$ is the mean of new data, then the greatest integer less than or equal to $\bar{x}$ is $.....$
If $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0),$ then show that $a, b, c$ and $d$ are in $G.P.$