If $L.M.V.$ theorem is true for $f(x) = x(x-1)(x-2);\, x \in [0,\, 1/2]$ , then $C =$ ?
$\left( {1 + \frac{{\sqrt {21} }}{6}} \right)$
$\left( {1 - \frac{{\sqrt {21} }}{6}} \right)$
$\frac {3}{16}$
Doe not exist
Let $f(x) = \sqrt {x - 1} + \sqrt {x + 24 - 10\sqrt {x - 1} ;} $ $1 < x < 26$ be real valued function. Then $f\,'(x)$ for $1 < x < 26$ is
Let $f(x)$ satisfy all the conditions of mean value theorem in $[0, 2]. $ If $ f (0) = 0 $ and $|f'(x)|\, \le {1 \over 2}$ for all $x$ in $[0, 2]$ then
The abscissa of the points of the curve $y = {x^3}$ in the interval $ [-2, 2]$, where the slope of the tangents can be obtained by mean value theorem for the interval $[-2, 2], $ are
If $f$ and $g$ are differentiable functions in $[0, 1]$ satisfying $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ and $f\left( 1 \right) = 6,$ then for some $c \in \left] {0,1} \right[$ . .
The function $f(x) = {x^3} - 6{x^2} + ax + b$ satisfy the conditions of Rolle's theorem in $[1, 3]. $ The values of $a $ and $ b $ are