If $L.M.V.$ theorem is true for $f(x) = x(x-1)(x-2);\, x \in [0,\, 1/2]$ , then $C =$ ?

  • A

    $\left( {1 + \frac{{\sqrt {21} }}{6}} \right)$

  • B

    $\left( {1 - \frac{{\sqrt {21} }}{6}} \right)$

  • C

    $\frac {3}{16}$

  • D

    Doe not exist

Similar Questions

Let $f, g:[-1,2] \rightarrow R$ be continuous functions which are twice differentiable on the interval $(-1,2)$. Let the values of $f$ and $g$ at the points $-1.0$ and $2$ be as given in the following table:

  $x=-1$ $x=0$ $x=2$
$f(x)$ $3$ $6$ $0$
$g(x)$ $0$ $1$ $-1$

In each of the intervals $(-1,0)$ and $(0,2)$ the function $(f-3 g)^{\prime \prime}$ never vanishes. Then the correct statement(s) is(are)

$(A)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly three solutions in $(-1,0) \cup(0,2)$

$(B)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(-1,0)$

$(C)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(0,2)$

$(D)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly two solutions in $(-1,0)$ and exactly two solutions in $(0,2)$

  • [IIT 2015]

In the mean value theorem, $f(b) - f(a) = (b - a)f'(c)$if $a = 4$, $b = 9$ and $f(x) = \sqrt x $ then the value of  $c$  is

A value of $c$ for which the conclusion of mean value the theorem holds for the function $f(x) = log{_e}x$ on the interval $[1, 3]$ is

For which interval, the function ${{{x^2} - 3x} \over {x - 1}}$ satisfies all the conditions of Rolle's theorem

If the function $f(x) = 2x^2 + 3x + 5$ satisfies $LMVT$ at $x = 3$ on the closed interval $[1, a]$ then the value of $a$ is equal to