Let $f$ and $g$ be real valued functions defined on interval $(-1,1)$ such that $g^{\prime \prime}(x)$ is continuous, $g(0) \neq 0, g^{\prime}(0)=0, g^{\prime \prime}(0) \neq$ 0 , and $f(x)=g(x) \sin x$.
$STATEMENT$ $-1: \lim _{x \rightarrow 0}[g(x) \cot x-g(0) \operatorname{cosec} x]=f^{\prime \prime}(0)$.and
$STATEMENT$ $-2: f^{\prime}(0)=g(0)$.
Statement-$1$ is True, Statement -$2$ is True; Statement-$2$ is a correct explanation for Statement-$1$
Statement -$1$ is True, Statement - $2$ is True; Statement-$2$ is $NOT$ a correct explanation for Statement-$1$
Statement -$1$ is True, Statement -$2$ is False
Statement -$1$ is False, Statement -$2$ is True
Let $f$ be any function continuous on $[\mathrm{a}, \mathrm{b}]$ and twice differentiable on $(a, b) .$ If for all $x \in(a, b)$ $f^{\prime}(\mathrm{x})>0$ and $f^{\prime \prime}(\mathrm{x})<0,$ then for any $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ $\frac{f(\mathrm{c})-f(\mathrm{a})}{f(\mathrm{b})-f(\mathrm{c})}$ is greater than
Which of the following function can satisfy Rolle's theorem ?
Suppose that $f (0) = - 3$ and $f ' (x) \le 5$ for all values of $x$. Then the largest value which $f (2)$ can attain is
Let $\psi_1:[0, \infty) \rightarrow R , \psi_2:[0, \infty) \rightarrow R , f:[0, \infty) \rightarrow R$ and $g :[0, \infty) \rightarrow R$ be functions such that
$f(0)=g(0)=0$
$\Psi_1( x )= e ^{- x }+ x , \quad x \geq 0$
$\Psi_2( x )= x ^2-2 x -2 e ^{- x }+2, x \geq 0$
$f( x )=\int_{- x }^{ x }\left(| t |- t ^2\right) e ^{- t ^2} dt , x >0$
and
$g(x)=\int_0^{x^2} \sqrt{t} e^{-t} d t, x>0$
($1$) Which of the following statements is $TRUE$ ?
$(A)$ $f(\sqrt{\ln 3})+ g (\sqrt{\ln 3})=\frac{1}{3}$
$(B)$ For every $x>1$, there exists an $\alpha \in(1, x)$ such that $\psi_1(x)=1+\alpha x$
$(C)$ For every $x>0$, there exists a $\beta \in(0, x)$ such that $\psi_2(x)=2 x\left(\psi_1(\beta)-1\right)$
$(D)$ $f$ is an increasing function on the interval $\left[0, \frac{3}{2}\right]$
($2$) Which of the following statements is $TRUE$ ?
$(A)$ $\psi_1$ (x) $\leq 1$, for all $x>0$
$(B)$ $\psi_2(x) \leq 0$, for all $x>0$
$(C)$ $f( x ) \geq 1- e ^{- x ^2}-\frac{2}{3} x ^3+\frac{2}{5} x ^5$, for all $x \in\left(0, \frac{1}{2}\right)$
$(D)$ $g(x) \leq \frac{2}{3} x^3-\frac{2}{5} x^5+\frac{1}{7} x^7$, for all $x \in\left(0, \frac{1}{2}\right)$
If $f$ and $g$ are differentiable functions in $[0, 1]$ satisfying $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ and $f\left( 1 \right) = 6,$ then for some $c \in \left] {0,1} \right[$ . .