A spherical planet far out in space has a mass ${M_0}$ and diameter ${D_0}$. A particle of mass m falling freely near the surface of this planet will experience an acceleration due to gravity which is equal to

  • A

    $G{M_0}/D_0^2$

  • B

    $4mG{M_0}/D_0^2$

  • C

    $4G{M_0}/D_0^2$

  • D

    $Gm{M_0}/D_0^2$

Similar Questions

A satellite is launched into a circular orbit of radius $R$ around earth, while a second satellite is launched into a circular orbit of radius $1.02\, {R}$. The percentage difference in the time periods of the two satellites is -

Which of the following statements are true about acceleration due to gravity?

$(a)\,\,'g'$ decreases in moving away from the centre if $r > R$

$(b)\,\,'g'$ decreases in moving away from the centre if $r < R$

$(c)\,\,'g'$ is zero at the centre of earth

$(d)\,\,'g'$ decreases if earth stops rotating on its axis

If the distance between centres of earth and moon is $D$ and the mass of earth is $81\, times$ the mass of moon, then at what distance from centre of earth the gravitational force will be zero

The change in the value of $g$ at a height $h$ above the surface of the earth is the same as at a depth $d$ below the surface of earth. When both $d$ and $h$ are much smaller than the radius of earth, then which one of the following is correct ?

Two spheres of masses $m$ and $M$ are situated in air and the gravitational force between them is $F.$ The space around the masses is now filled with a liquid of specific gravity $3.$ The gravitational force will now be