Gujarati
Hindi
7.Gravitation
normal

Suppose the gravitational force varies inversely as the nth power of distance. Then the time period of a planet in circular orbit of radius $R$ around the sun will be proportional to

A

${R^{\left( {\frac{{n + 1}}{2}} \right)}}$

B

${R^{\left( {\frac{{n - 1}}{2}} \right)}}$

C

$R^n$

D

${R^{\left( {\frac{{n - 2}}{2}} \right)}}$

Solution

The necessary centripetal force required for a planet to move round the sun. $=$ gravitational force exerted on it

ie, $\quad \frac{\mathrm{mv}^{2}}{\mathrm{R}}=\frac{\mathrm{GMm}}{\mathrm{R}^{\mathrm{n}}}$

or $\quad \mathrm{v}=\left(\frac{\mathrm{GM}}{\mathrm{R}^{\mathrm{n}-1}}\right)^{1 / 2}$

Now, $T=\frac{2 \pi R}{v}=2 \pi R \times\left(\frac{R^{n-1}}{G M}\right)^{1 / 2}$

$=2 \pi\left(\frac{\mathrm{R}^{2} \times \mathrm{R}^{\mathrm{n}-1}}{\mathrm{GM}}\right)^{1 / 2}=2 \pi\left(\frac{\mathrm{R}^{(\mathrm{n}+1) / 2}}{(\mathrm{GM})^{1 / 2}}\right)$

or $\quad \mathrm{T} \propto \mathrm{R}^{(n+1) / 2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.