A body of mass $m$ is lifted up from the surface of the earth to a height three times the radius of the earth. The change in potential energy of the body is
where $g$ is acceleration due to gravity at the surface of earth.
$3mgR$
$\frac{3}{4} mgR$
$\frac{1}{3} mgR$
$\frac{2}{3} mgR$
The force of gravitation is
Which graph correctly presents the variation of acceleration due to gravity with the distance from the centre of the earth (radius of the earth $= R_E$ )?
If the change in the value of ' $g$ ' at a height ' $h$ ' above the surface of the earth is same as at a depth $x$ below it, then ( $x$ and $h$ being much smaller than the radius of the earth)
Which of the following statements are true about acceleration due to gravity?
$(a)\,\,'g'$ decreases in moving away from the centre if $r > R$
$(b)\,\,'g'$ decreases in moving away from the centre if $r < R$
$(c)\,\,'g'$ is zero at the centre of earth
$(d)\,\,'g'$ decreases if earth stops rotating on its axis
Two spherical bodies of mass $M$ and $5M$ and radii $R$ and $2R$ respectively are released in free space with initial separation between their centres equal to $12\,R$. If they attract each other due to gravitational force only, then the distance covered by the smaller body just before collision is