- Home
- Standard 11
- Mathematics
Suppose the sides of a triangle form a geometric progression with common ratio $r$. Then, $r$ lies in the interval
$\left(0, \frac{-1+\sqrt{5}}{2}\right)$
$\left(\frac{1+\sqrt{5}}{2}, \frac{2+\sqrt{5}}{2}\right)$
$\left(\frac{1+\sqrt{5}}{2}, \frac{2+\sqrt{5}}{2}\right]$
$\left(\frac{2+\sqrt{5}}{2}, \infty\right)$
Solution
(c)
Let the sides of triangle are
$a, a r, a r^2 . \quad[\because$ sides of triangle in $GP ]$
Case I $r > 1$
We know sum of two sides is greater than third side.
$\therefore a+a r>a r^2 \Rightarrow r^2-r-1<0$
$\begin{array}{ll} \Rightarrow & r=\frac{1 \pm \sqrt{5}}{2} \\\Rightarrow & 1 < r < \frac{\sqrt{5}+1}{2}, r > 1\end{array}$
Case $II$ $0 < r < 1$
$\therefore a r^2+a r > a \Rightarrow r^2+r-1 > 0$
$\Rightarrow \quad r=\frac{-1 \pm \sqrt{5}}{2}$
$\Rightarrow \quad 1 > r > \frac{\sqrt{5}-1}{2}, 0 < r < 1$
$\therefore \quad r \in\left(\frac{\sqrt{5}-1, \sqrt{5}+1}{2}, \frac{2}{2}\right)$