Taking the set of natural numbers as the universal set, write down the complements of the following sets:

$\{x: x+5=8\}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$U = N$ set of natural numbers

${\{ x:x + 5 = 8\} ^\prime } = \{ x:x \in N$ and $x \ne 3\} $

Similar Questions

Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find

$(A \cup B)^{\prime}$

Let $U$ be the universal set and $A \cup B \cup C = U$. Then $\{ (A - B) \cup (B - C) \cup (C - A)\} '$ is equal to

Taking the set of natural numbers as the universal set, write down the complements of the following sets:

$\{ x:x$ is a positive multiple of $3\} $

Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find

$(B-C)^{\prime}$

Given $n(U) = 20$, $n(A) = 12$, $n(B) = 9$, $n(A \cap B) = 4$, where $U$ is the universal set, $A$ and $B$ are subsets of $U$, then $n({(A \cup B)^C}) = $