If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:
$A=\{a, b, c\}$
Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find
$B^{\prime}$
If $n(U)$ = $600$ , $n(A)$ = $100$ , $n(B)$ = $200$ and $n(A \cap B )$ = $50$, then $n(\bar A \cap \bar B )$ is
($U$ is universal set and $A$ and $B$ are subsets of $U$)
Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find
$\left(A^{\prime}\right)^{\prime}$
Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find
$A^{\prime}$