The locus of the point of intersection of any two perpendicular tangents to the hyperbola is a circle which is called the director circle of the hyperbola, then the eqn of this circle is
${x^2} + {y^2} = {a^2} + {b^2}$
${x^2} + {y^2} = {a^2} - {b^2}$
${x^2} + {y^2} = 2ab$
None of these
Let $e_{1}$ and $e_{2}$ be the eccentricities of the ellipse, $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1(b<5)$ and the hyperbola $\frac{ x ^{2}}{16}-\frac{ y ^{2}}{ b ^{2}}=1$ respectively satisfying $e _{1} e _{2}=1 .$ If $\alpha$ and $\beta$ are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair $(\alpha, \beta)$ is equal to
Find the equation of the hyperbola with foci $(0,\,\pm 3)$ and vertices $(0,\,\pm \frac {\sqrt {11}}{2})$.
The equation of a line passing through the centre of a rectangular hyperbola is $x -y -1 = 0$. If one of the asymptotes is $3x -4y -6 = 0$, the equation of other asymptote is
Let the focal chord of the parabola $P: y^{2}=4 x$ along the line $L: y=m x+c, m>0$ meet the parabola at the points $M$ and $N$. Let the line $L$ be a tangent to the hyperbola $H : x ^{2}- y ^{2}=4$. If $O$ is the vertex of $P$ and $F$ is the focus of $H$ on the positive $x$-axis, then the area of the quadrilateral $OMFN$ is.
If the eccentricity of a hyperbola $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{{b^2}}} = 1,$ which passes through $(K, 2),$ is $\frac{{\sqrt {13} }}{3},$ then the value of $K^2$ is