Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be $\frac{5}{4}$. If the equation of the normal at the point $\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ on the hyperbola is $8 \sqrt{5} x +\beta y =\lambda$, then $\lambda-\beta$ is equal to
$89$
$85$
$78$
$45$
The product of the lengths of perpendiculars drawn from any point on the hyperbola ${x^2} - 2{y^2} - 2 = 0$ to its asymptotes is
If $ PN$ is the perpendicular from a point on a rectangular hyperbola $x^2 - y^2 = a^2 $ on any of its asymptotes, then the locus of the mid point of $PN$ is :
Let $\mathrm{A}\,(\sec \theta, 2 \tan \theta)$ and $\mathrm{B}\,(\sec \phi, 2 \tan \phi)$, where $\theta+\phi=\pi / 2$, be two points on the hyperbola $2 \mathrm{x}^{2}-\mathrm{y}^{2}=2$. If $(\alpha, \beta)$ is the point of the intersection of the normals to the hyperbola at $\mathrm{A}$ and $\mathrm{B}$, then $(2 \beta)^{2}$ is equal to ..... .
Length of latus rectum of hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 4\,is\,\left( {\alpha \ne \frac{{n\pi }}{2},n \in I} \right)$
The auxiliary equation of circle of hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, is